3.76 \(\int \frac{\cosh (c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=52 \[ \frac{\sinh (c+d x)}{a d}-\frac{b \tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{a^{3/2} d \sqrt{a+b}} \]

[Out]

-((b*ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]])/(a^(3/2)*Sqrt[a + b]*d)) + Sinh[c + d*x]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.061165, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {4147, 388, 205} \[ \frac{\sinh (c+d x)}{a d}-\frac{b \tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{a^{3/2} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

-((b*ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]])/(a^(3/2)*Sqrt[a + b]*d)) + Sinh[c + d*x]/(a*d)

Rule 4147

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^
((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n
/2] && IntegerQ[p]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cosh (c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1+x^2}{a+b+a x^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac{\sinh (c+d x)}{a d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+b+a x^2} \, dx,x,\sinh (c+d x)\right )}{a d}\\ &=-\frac{b \tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{a^{3/2} \sqrt{a+b} d}+\frac{\sinh (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.12126, size = 52, normalized size = 1. \[ \frac{\sqrt{a} \sinh (c+d x)-\frac{b \tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a+b}}}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

(-((b*ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]])/Sqrt[a + b]) + Sqrt[a]*Sinh[c + d*x])/(a^(3/2)*d)

________________________________________________________________________________________

Maple [B]  time = 0.069, size = 128, normalized size = 2.5 \begin{align*} -{\frac{b}{d}\arctan \left ({\frac{1}{2} \left ( 2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{a+b}+2\,\sqrt{b} \right ){\frac{1}{\sqrt{a}}}} \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}-{\frac{b}{d}\arctan \left ({\frac{1}{2} \left ( 2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{a+b}-2\,\sqrt{b} \right ){\frac{1}{\sqrt{a}}}} \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+b}}}}-{\frac{1}{da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{1}{da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)/(a+b*sech(d*x+c)^2),x)

[Out]

-1/d/a^(3/2)*b/(a+b)^(1/2)*arctan(1/2*(2*tanh(1/2*d*x+1/2*c)*(a+b)^(1/2)+2*b^(1/2))/a^(1/2))-1/d/a^(3/2)*b/(a+
b)^(1/2)*arctan(1/2*(2*tanh(1/2*d*x+1/2*c)*(a+b)^(1/2)-2*b^(1/2))/a^(1/2))-1/d/a/(tanh(1/2*d*x+1/2*c)-1)-1/d/a
/(tanh(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )} e^{\left (-d x - c\right )}}{2 \, a d} - \frac{1}{2} \, \int \frac{4 \,{\left (b e^{\left (3 \, d x + 3 \, c\right )} + b e^{\left (d x + c\right )}\right )}}{a^{2} e^{\left (4 \, d x + 4 \, c\right )} + a^{2} + 2 \,{\left (a^{2} e^{\left (2 \, c\right )} + 2 \, a b e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x - c)/(a*d) - 1/2*integrate(4*(b*e^(3*d*x + 3*c) + b*e^(d*x + c))/(a^2*e^(4*d
*x + 4*c) + a^2 + 2*(a^2*e^(2*c) + 2*a*b*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.37508, size = 1891, normalized size = 36.37 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 -
sqrt(-a^2 - a*b)*(b*cosh(d*x + c) + b*sinh(d*x + c))*log((a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^
3 + a*sinh(d*x + c)^4 - 2*(3*a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 - 3*a - 2*b)*sinh(d*x + c)^2 +
4*(a*cosh(d*x + c)^3 - (3*a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + 4*(cosh(d*x + c)^3 + 3*cosh(d*x + c)*sinh(d*
x + c)^2 + sinh(d*x + c)^3 + (3*cosh(d*x + c)^2 - 1)*sinh(d*x + c) - cosh(d*x + c))*sqrt(-a^2 - a*b) + a)/(a*c
osh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*
cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a
)) - a^2 - a*b)/((a^3 + a^2*b)*d*cosh(d*x + c) + (a^3 + a^2*b)*d*sinh(d*x + c)), 1/2*((a^2 + a*b)*cosh(d*x + c
)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 - 2*sqrt(a^2 + a*b)*(b*cosh(d*x
+ c) + b*sinh(d*x + c))*arctan(1/2*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3
+ (3*a + 4*b)*cosh(d*x + c) + (3*a*cosh(d*x + c)^2 + 3*a + 4*b)*sinh(d*x + c))/sqrt(a^2 + a*b)) - 2*sqrt(a^2 +
 a*b)*(b*cosh(d*x + c) + b*sinh(d*x + c))*arctan(1/2*sqrt(a^2 + a*b)*(cosh(d*x + c) + sinh(d*x + c))/(a + b))
- a^2 - a*b)/((a^3 + a^2*b)*d*cosh(d*x + c) + (a^3 + a^2*b)*d*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(cosh(c + d*x)/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

Exception raised: TypeError